
101

Messaging:
communicating to and

from scripts in HTML5

In the last decade, the web has moved from communication based on uploading

static content, similar to the traditional print publishing model, to a real-time com-

munication system where tweets and friendings are instantly announced to hun-

dreds of followers. We’ve all become so used to dynamically updating web pages

that we don’t realize most of this is built as a series of hacks on top of HTML4 and

HTTP 1.0/1.1. HTML5 cleans up these hacks by providing well-defined APIs for mes-

saging—between the browser and web servers and between different iframes or

other objects loaded in the browser.

 Because messaging is a complex subject, this will be a complex chapter. You’re

going to do a lot and learn a lot. Specifically, you’re going to

This chapter covers

■ Server-sent events and event-driven

communications from the server

■ WebSockets for bidirectional, event-driven

communication

■ Client-side messaging between pages from

different domains

102 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

■ Learn how to use server-sent events (SSE). This new client-server API allows

communication from the server without a specific client request.

■ Learn how to use WebSockets.

■ Dabble in one of the new event-driven, server-side technologies: Node.js.

■ Learn about cross-document messaging, an API for communication between

pages and scripts already loaded in the browser.

After you build those two applications, we’ll show you how to integrate them on the

client using cross-document messaging.

 If you need background on the principles of computer networking, take a side trip

through appendix D. It’ll help you understand the performance trade-offs to using

the new HTML5 client-server APIs, as well as define terms like protocol, network stack,

latency, throughput, polling, and event-driven. The appendix will also give you the back-

ground to understand why and when to use the new approaches we introduce in this

chapter, such as server-sent events, which we cover in the next section.

4.1 Server-sent events (SSE)

Server-sent events (SSE) allow the web server to create an event in the browser. The event

can contain raw data or it can be a notification or a ping. The API for SSE in the browser

is the event listener in JavaScript, created using the same addEventListener() method

you’d use for any other event listener. The only difference is that instead of adding a

listener to the document object or an element, you add it to an instance of the new

WebSocket object. Why is this any better than requesting new data with AJAX? SSE

offers two main advantages:

■ The server drives communication.

■ There’s less overhead of repeatedly creating a connection and adding headers.

In this section you’ll learn how to use SSE as you build a simple chat application. As

the section winds down, you’ll also learn when it’s good to use SSE and when another

tool might be better.

4.1.1 A simple SSE chat application

Server-sent events are delivered to the browser in the form of a special file the browser

requests by creating an EventSource object. Instead of a regular HTML file or image,

the browser requests an event stream. Normally, the server attempts to deliver any file

as fast as possible, but with the event stream the file is purposely delivered slowly. The

Why build this chapter’s chat and planning board applications?

■ You’ll build a chat application based on a traditional LAMP/WIMP (Linux, Apache,

MySQL, PHP/Windows, IIS, MySQL, PHP) server stack to learn about SSE.

■ You’ll build a collaborative agile planning board with WebSockets and Node.js.

103Server-sent events (SSE)

browser stays connected to the server for as long as the file takes to be delivered, and

the server can add data to the file at any time. This approach is identical to that used

by the forever frame technique (defined in appendix D) except that instead of devel-

opers having to decide for themselves how to format the response, the format is laid

down in the HTML5 standard. In return for following SSE conventions, you use the

familiar addEventListener() approach you’d use for any other events.

As we discuss how to build an SSE chat application, we’ll focus on the front-end code,

because we’re not trying to teach PHP or MySQL. That said, the easiest way forward is

to download the server files, listed in the “Chat application prerequisites” sidebar.

Figure 4.1 shows a screenshot of the finished

application.

 As you can see, the user types a message

into the text input and hits Enter or the Chat

button, and his words of wisdom are immedi-

ately distributed to everyone else online. The

chat shown in figure 4.1 is, of course, entirely

manufactured. Rest assured; the authors are

not that corny in real life.

 As you might guess from the name, server-

sent events, the server sends events to the

browser; it can’t receive information via SSE.

Communication from the browser back to

the server, new chat messages entered by the

Server-sent events 9 6 N/A 11 5

Chat application prerequisites

You’ll need the following programs to make the application in this section work:

■ A web server that can host PHP—We used Apache (http://apache.org/) for the

example, but IIS on Windows also should work.

■ PHP—Download from http://php.net/ with PDO support.

■ MySQL—Download from http://dev.mysql.com/.

■ jQuery—Download from http://jquery.com/ (included in code download).

The other files you need are available in the code download section of our book’s

website. If you don’t want to do the setup yourself, you can also get all the needed

components as part of most inexpensive web-hosting packages.

Figure 4.1 The simple chat application

in action

http://apache.org/
http://php.net/
http://dev.mysql.com/
http://jquery.com/

104 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

user, will use traditional AJAX methods. Figure 4.2 illustrates the flow of chat messages

in the application.

 The file structure you’ll create, and which is provided in the companion source

code for this book, is illustrated in figure 4.3.

 For everything to work, these files will need to be located in a directory where your

web server can find them. For Apache, this will likely be under /var/www/html, and

for IIS, this will be C:\Inetpub\WWWRoot; check the details in the documentation for

your OS and web server. Usually these folders have restricted access, so either create

and edit the files in your home directory and copy them across or run your editor with

appropriate permissions. Through the following steps we’ll refer to this directory as

the working directory.

 We’ll walk you through the build in eight steps:

■ Step 1: Create a database in which to store chat messages.

■ Step 2: Create a chat form.

■ Step 3: Create a login form.

■ Step 4: Implement a login process.

■ Step 5: Send new chat messages to the server with AJAX.

■ Step 6: Store new chat messages in the database.

■ Step 7: Build an SSE stream at the server.

■ Step 8: Connect to an SSE stream in the browser.

Browser

AJAX

Chat messages

SSE

Server

Figure 4.2 The conceptual flow of chat

messages in this section’s application.

Messages will be sent back to the server using

standard AJAX techniques, but chat messages

will be received from the server through server-

sent events.

Figure 4.3 The file layout for

the chat application

105Server-sent events (SSE)

STEP 1: CREATE A DATABASE IN WHICH TO STORE CHAT MESSAGES

Use your MySQL administration tool to create a database called ssechat (see appen-

dix C). Included in the code download is a chat.sql file, which, when run, will create two

tables in the database called sessions, to record who is logged in, and log, to record

a log of the chat messages. Get the file credentials.php from the source code down-

load and edit it to contain your database connection details. The example expects

$user, $pass, and $db to define strings for the username, password, and connection

string, respectively. The $db variable will look something like "mysql:host=local-

host;dbname=ssechat".

STEP 2: CREATE A CHAT FORM

Create the index.php page and the markup that users will see. The markup will con-

tain two forms that will be visible or not, depending on the status of the user. In this

step you’ll create the list of chat messages and a form for adding new ones; in the

next step you’ll create a form for logging in. The following listing shows the PHP

source for the form shown in figure 4.1. It’s a simple HTML template that makes a cou-

ple of function calls to render the main content, and it contains a form to allow new

chat messages to be added.

<body>
 Online now:
 <ul class="chatusers">
 <?php
 print_user_list($dbh);
 ?>

 <div class="chatwindow">
 <ul class="chatlog">
 <?php
 print_chat_log($dbh);
 ?>

 </div>
 <form id="chat" class="chatform" method="post"
 action="add-chat.php">
 <label for="message">Share your thoughts:</label>
 <input name="message" id="message" maxlength="512" autofocus>

SSE on older browsers

Server-sent events are a rationalized version of the forever-frame hack discussed in

appendix D. The required server-side code is similar, so the most obvious approach

for fallback in older browsers is to use the forever frame if SSE isn’t available. An

alternative is to use one of the prebuilt libraries, which implement a fallback trans-

parently. One such library is Remy Sharp’s EventSource.js polyfill: https://github.com/

remy/polyfills/blob/master/EventSource.js.

Listing 4.1 index.php body content

The print_user_list function
outputs an unordered list
(the HTML element) of
currently logged-on users.

The print_chat_log
function outputs an
unordered list of
chat messages.

The chatform has an
action defined that allows
it to work, in a limited
sense, without JavaScript
enabled, but JavaScript
will be used to override
the default action in
listing 4.6.

https://github.com/remy/polyfills/blob/master/EventSource.js
https://github.com/remy/polyfills/blob/master/EventSource.js

106 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

 <input type="submit" value="Chat">
 </form>
</body>

You’ll also need to set up basic links in the <head> section of index.php. The required

code is shown in the next listing.

<?php
session_start();
include_once "credentials.php";
include_once "functions.php";
try {
 $dbh = new PDO($db, $user, $pass);
} catch (PDOException $e) {
 print "Error!: " . $e->getMessage(). "
";
 die();
}
?><!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>SSE Chat</title>
 <link href="style.css" rel="stylesheet">
 <script src="jquery-1.7.1.min.js"></script>
 <script>var uid='<?php print session_id(); ?>';</script>
 <script src="chat.js"></script>
</head>

STEP 3: CREATE A LOGIN FORM

In order to track which user is which, you need to have them log in, which means

recording their chat handle along with their PHP session ID. As mentioned in step 2,

rather than create a separate page for this, you’re going to add another form into the

index.php file, then use conditional statements to turn the visibility of the form on

and off. You’re not going to do anything fancy—the index.php page with the login

form enabled is shown in figure 4.4.

As we just discussed, you don’t need to create a separate PHP file for displaying the pre-

vious form—instead, you’ll add conditional functionality to your existing index.php

page. The following listing contains the code that determines whether to show the login

form or the chat form. It should go immediately after the <body> tag in listing 4.1.

Listing 4.2 index.php head

This enables the standard
PHP session tracking.

Common variables and functions
are included from separate files.

You’ll be using PHP Data
Objects (PDO) to connect
to the database.

Make the PHP
session ID
easily available
to JavaScript
(saves reading
the cookie).

chat.js is the file where you’ll later
implement the client-side code for SSE.

Figure 4.4 A simple login page for

the chat application

107Server-sent events (SSE)

<?php
try {
 $checkOnline = $dbh->prepare(
 'SELECT * FROM sessions WHERE session_id = :sid');
 $checkOnline->execute(array(':sid' => session_id()));
 $rows = $checkOnline->fetchAll();
} catch (PDOException $e) {
 print "Error!: " . $e->getMessage(). "
";
 die();
}
if (count($rows) > 0) {
?>

Now that you’ve added a conditional statement before the code for the chat form, you

have to close the first block of the condition, then add the code for the login form

inside an else block after the chat page code. The code for the login form is shown

in the next listing. It should be placed immediately before the closing </body> tag in

index.php.

<?php
} else {
?>
<form id="login" class="chatlogin"
 method="post" action="add-session.php">
 <label for="handle">Enter your handle:</label>
 <input name="handle" id="handle" maxlength="127" autofocus>
 <input type="submit" value="Join">
</form>
<?php
}
?>

TRY IT OUT

You should now be able to see the login form by browsing to the index.php file on your

local server. It won’t do anything yet, because you haven’t created a PHP file to process

the logins. In order to get users logged in, you’ll need a working add-session.php file.

STEP 4: IMPLEMENT A LOGIN PROCESS

The add-session.php file is shown next. Put this file in the same directory as index.php,

as per the file layout in figure 4.3.

<?php
session_start();
include_once "credentials.php";
try {
 $dbh = new PDO($db, $user, $pass);
 $preparedStatement = $dbh->prepare(

Listing 4.3 Check to see if the user is logged on

Listing 4.4 Display a login form

Listing 4.5 The add-session.php file

Look up all the sessions in the database with
a session_id equal to the current session_id().

If one is found, assume the
user is logged in. (This is
intended to be the simplest
code that will work—it’s not
best practice, secure PHP.)

The rest
of the

code from
listing 4.1,
starting at

,
will

continue
here.

This else statement corresponds
to the if at the end of listing 4.3.

The add-
session.php file
will deal with
inserting the
user into the
database.

108 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

 'INSERT INTO `sessions`(`session_id`, `handle`, `connected`)
 VALUES (:sid,:handle,NOW())');
 $preparedStatement->execute(
 array(':sid' => session_id(), ':handle' => $_POST["handle"]));
 $rows = $preparedStatement->fetchAll();
 $dbh = null;
} catch (PDOException $e) {
 print "Error!: " . $e->getMessage(). "
";
 die();
}
header("Location: index.php");
?>

Now that you have the user’s basic details sorted out, it’s time to implement the appli-

cation functionality.

STEP 5: SEND NEW CHAT MESSAGES TO THE SERVER WITH AJAX

You accomplish the transport of data back to the server with traditional AJAX tech-

niques. The next listing shows the code for processing the chat form submit—noth-

ing surprising for experienced front-end developers. Create a file chat.js in your

working directory to contain all of your JavaScript code; as per figure 4.3 you can

create it in the same directory as index.php and put the code from the following list-

ing in it.

$(document).ready(
 function() {
 var chatlog = $('.chatlog');
 if (chatlog.length > 0) {
 var chatformCallback = function() {
 chatform.find('input')[0].value = '';
 }
 chatform.bind('submit', function() {
 var ajax_params = {
 url: 'add-chat.php',
 type: 'POST',
 data: chatform.serialize(),
 success: chatformCallback,
 error: function () {
 window.alert('An error occurred');
 }
 };
 $.ajax(ajax_params);
 return false;
 })

STEP 6: STORE NEW CHAT MESSAGES IN THE DATABASE

On the server you’ll need a script to insert the chat messages in the database as they’re

created. The next listing shows the source code for add-chat.php, which grabs the

message from a POST request and stores it with the appropriate details.

Listing 4.6 Add a chat message (client code)

You’re not doing anything more
complex than recording the

submitted handle in the
database with the session_id().

Redirect to index.php
when finished.

You’ll close the function
and the condition in
listing 4.9.

A simple function to clear the
chat input after the message
has been successfully sent to
the server.

The add-chat.php takes the message and
adds it to the database, along with some
information from the session; check the
download files for more details.

Because the form is
submitted by AJAX, you don’t
want the page to reload.

109Server-sent events (SSE)

<?php
session_start();
include_once "credentials.php";
$dbh = new PDO($db, $user, $pass);
$preparedStatement = $dbh->prepare('
 INSERT INTO `log`(`session_id`,`handle`, `message`, `timestamp`)
 VALUES (
 :sid,
 (SELECT `handle` FROM `sessions` WHERE `session_id` = :sid),
 :message,NOW()
)');
$preparedStatement->execute(
 array(':sid' => session_id(),
 ':message' => $_POST["message"]));
$rows = $preparedStatement->fetchAll();
$dbh = null;
session_write_close();
header("HTTP/1.1 200 OK");
echo "OK";
ob_flush();
flush();
die();
?>

You’ve created a simple interface and a way to add new chat messages—now at last

you’re ready to start using SSE. What you need next is a way to get the chat messages of

other users to appear in your browser as they’re entered by your fellow chatters. This

is the sort of task SSE is designed for.

STEP 7: BUILD AN SSE STREAM AT THE SERVER

The following snippet shows an excerpt from an SSE event stream like the one you’re

about to create. It’s all plain text and should be served with the MIME type text/

event-stream (typically, because you’re generating the event stream dynamically,

you’ll set the MIME type in your server-side code). A sample of the event stream you’ll

be generating is shown here:

event: useradded
data: Rob

event: message
data: <time datetime="2011-10-24 10:13:17">10:13</time>
 Joe How can we be sure?

event: message
data: <time datetime="2011-10-24 10:13:40">10:13</time>
 Rob Well, according to Wittgenstein...

The event stream itself is similar to the forever-frame approach (see appendix D). A

connection is opened and kept open, and the chat.js script periodically adds content

Listing 4.7 Add a chat message (server code)

The database details are
stored in a separate file.

The message table is simple: an
ID, a user handle, and a time

(the user handle is being stored
for convenience).

All database access in this
example is using PHP’s PDO
database library—this should be
part of your standard PHP install.

An event is defined by the keyword event, followed
by a colon, followed by the name of the event.On the

following
line, the

data
keyword
gives the

text to be
associated

with the
event.

Any string can be used to define the event name, but note that the events captured
by any script in the browser will have the same name as the events being emitted.

The data can also be
any string; the script
in the browser is
responsible for
interpreting it
correctly.

110 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

to it. Each time new content arrives at the browser, it’s converted into the simple

event-driven JavaScript programming model with which we’re all familiar.

 The code on the server is straightforward. Create a file sse.php to generate the

event stream in the same directory as index.php and add the same session_start(),

include_once, and PDO creation code that starts off index.php. You don’t need to

add a !DOCTYPE declaration because you’re not generating an HTML page. Then

add code to loop, constantly looking for new messages. If you already have a forever-

frame script, it’s likely you can easily adapt it. The code for sse.php is shown in the fol-

lowing listing.

<?php
session_start();
include_once "credentials.php";
include_once "functions.php";
try {
 $dbh = new PDO($db, $user, $pass);
} catch (PDOException $e) {
 print "Error!: " . $e->getMessage(). "
";
 die();
}
header('Content-Type: text/event-stream');
header('Cache-Control: no-cache');
$uid = $_REQUEST["uid"];
$lastUpdate = time();
$startedAt = time();
session_write_close();
var $lastupdate = now();
while (is_logged_on($dbh, $uid)) {
 $getChat = $dbh->prepare('SELECT `timestamp`,`handle`, `message`
 FROM `log`
 WHERE `timestamp` >= :lastupdate
 ORDER BY `timestamp`');
 $getChat->execute(
 array(':lastupdate' => strftime("%Y-%m-%d %H:%M:%S", $lastUpdate))
);
 $rows = $getChat->fetchAll();
 foreach($rows as $row) {
 echo "event: message\n";
 echo "data: <time datetime=\"".$row['timestamp']."\">";
 echo strftime("%H:%M",strtotime($row['timestamp']));
 echo "</time> ".$row['handle']." ";
 echo $row['message']."\n\n";
 ob_flush();
 flush();
 }
 $lastUpdate = time();
 sleep(2);
}
?>

Listing 4.8 sse.php key code loop

Set the correct
content-type.

Ensure the stream
isn’t cached.

A quirk of
PHP is that
the session

is single-
threaded; if
you leave it
open in this

script, it’ll
block any

other pages
using it.

Loop here until the user logs out. Nearly all
web server configurations limit execution
time to between 30 and 90 seconds to allow
the script to time out, but the browser will
automatically reconnect.

In a real application, you’d factor this
inline SQL into a function. This example
tries to keep all the logic visible.

Fetch all chat messages added to the database
since the last update; to keep things simple you’ll
worry about only the message event for now.

In a real
application

you’d
invoke some

rendering
logic here

that’s
shared

among your
application

files. Send the data as HTML. You could also
send it as a JSON-encoded object.

Stores the last time you updated, and sleeps for two seconds.
This is necessary in this example because the MySQL timestamp
column is only accurate to the closest second. Implementing a
millisecond-accurate time field in MySQL is possible but has been
avoided here to keep the code simple.

111Server-sent events (SSE)

Like the forever frame, you gain a low overhead of passing data from the server to the

client. Once the connection is open, the only data that needs to be transferred is that

which is pertinent to the application. No headers need to be sent with each update.

STEP 8: CONNECT TO AN SSE STREAM IN THE BROWSER

To retrieve chat messages, you’ll connect your index.php page to the event stream using

an EventSource object. The next listing shows the relevant JavaScript. You should add it

to the chat.js you created in step 5. In this listing the EventSource is established and

event listeners are added. The annotations explain the key points.

 var evtSource = new EventSource("sse.php?uid=" + uid);

 evtSource.addEventListener("message", function(e) {
 var el = document.createElement("li");
 el.innerHTML = e.data;
 chatlog.appendChild(el);
 })
 evtSource.addEventListener("useradded", function(e) {
 var el = document.createElement("li");
 el.innerHTML = e.data;
 chatusers.appendChild(el);
 })
 }
 }
)

TRY IT OUT!

Everything is now in place for you to try the application. If you haven’t already, copy

all the files to a location where your web server can access them (as discussed earlier

in this chapter, this is likely to be either /var/www/html or C:\Inetpub\WWWRoot)

and have a go. You can use a couple of different browsers to simulate multiple users

and try talking to yourself.

Listing 4.9 Client code for connecting to an event stream

Controlling the default server timeout

There’s one thing to bear in mind if you’re using PHP on Apache, as in this example:

The default script timeout is 30 seconds. This means that after 30 seconds the script

on the server will be terminated and the connection will be dropped.

This isn’t a problem on the client side, because it should automatically reconnect to

the event source. By default, a reconnection will be attempted every 3 seconds, but

it’s also possible to control this from the event stream by emitting a retry directive:

retry: 10000

The number is a time in milliseconds. This should force the browser to wait 10 sec-

onds before attempting a reconnect. Controlling the retry time would be useful if you

knew the server was going to be unavailable or under high load for a short time.

Core API

Core API

An EventSource is
declared by linking to

the script on the
server that provides

the event stream; the
uid is a value passed
via the host page to

link users to their
PHP session on the

server side.

Event listeners
can be added to
the EventSource
using normal
DOM methods.

What the events will be called is
determined in the server script;

“message” and “useradded” aren’t
regular DOM events but the ones defined

in the server-side code (see listing 4.8).

This closes the function
and conditional opened
in listing 4.6.

112 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

4.1.2 When to use SSE

Before we move on to WebSockets, let’s step back to consider why it was worth bother-

ing with SSE. After all, server-sent events do have some obvious disadvantages:

■ You can only communicate from the server to the client.

■ SSE offers little advantage over long-polling or forever frame.

If your application implemented one of the older hacks, it would probably not be

worth updating just to take advantage of an event-driven interface consistent with

other HTML5 APIs. SSE won’t dramatically lower the communication overhead com-

pared to these hacks. If you’re starting from scratch, SSE does have advantages over

WebSockets (which we’ll talk about in the next section):

■ It’s an extremely simple wire protocol.

■ It’s easy to implement on cheap hosting.

If you’re working on a hobby project, SSE will probably be a good fit for you. But if

you’re working on high-load, web-scale startups where you’re constantly tweaking the

infrastructure, you’ll want to look closely at WebSockets, the pièce de résistance of the

HTML5 communication protocols.

 In the next section you’ll use Node.js web server (also commonly referred to as just

plain Node) to write an application using WebSockets. Node is well suited to SSE and

WebSockets because it’s designed from the ground up to do event-driven communi-

cation (frequent, small, but irregular message sending; see appendix D). If you’re

used to web servers like Apache or IIS, it works differently than you might expect. It’s

therefore worth spending time becoming familiar with the basics.

4.2 Using WebSockets to build a real-time messaging web app

WebSockets allow bare-bones networking between clients and servers with far less

overhead than the previously more common approach of tunneling other protocols

through HTTP. With WebSockets it’s possible to package your data using the appropri-

ate protocol, XMPP (Extensible Messaging and Presence Protocol) for chat, for exam-

ple, while also benefiting from the strengths of HTTP.

 The WebSockets Protocol, which describes what browser vendors and servers must

implement behind the scenes, is used at the network layer to establish and maintain

socket connections and pass data through them. The WebSockets API describes the

interface that needs to be available in the DOM so that WebSockets can be used from

JavaScript. Appendix D more fully describes the protocol and API, so if you’d like

more information before you build the next piece of this chapter’s sample applica-

tion—an agile planning board—detour to section D.6, “Understanding the WebSock-

ets Protocol,” now.

 When you return, we’ll give you an overview of the application you’re going to

build and help you get your prerequisites in order, have you create and test a Web-

Socket with Node.js, and build the planner application.

113Using WebSockets to build a real-time messaging web app

4.2.1 Application overview and prerequisites

In section 4.1 you built a simple chat system based on SSE. In this section you’ll use

WebSockets and Node.js to build an agile planning board which is intended to be a

simple way to group tasks according to their status so that progress on the overall proj-

ect can be discerned at a glance. Tasks, originally represented by sticky notes on a

notice board (figure 4.5), are slotted into three or more simple categories such as to

do, in progress, and done.

 Agile methodologies are a particularly attractive target for tools based on messag-

ing because agile is intended to be collaborative rather than dictatorial. So it’s expected

Figure 4.5 A real-life agile planning board at the TotalMobile offices in

Belfast. The sticky notes describe tasks to be done, and the four quadrants

are labeled, from top-left clockwise, NOT DONE, IN PROGRESS, DONE, and

REVIEW. In this section you’ll develop an electronic version of this board.

114 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

that you might have a bunch of people online trying to update the same plan at the

same time.

BEFORE YOU PROCEED: PREREQUISITES

Before you begin this portion of the application, you’ll need certain prerequisites to

make the application in this section work. Specifically, you’ll need the following:

■ The chat app—See section 4.1.

■ Node.js—Download from http://nodejs.org/; see appendix E for install instructions.

■ You’ll also need to install four Node modules (see appendix E for details of how

to install):

– Director—Download from https://github.com/flatiron/director or install with

NPM; for handling routing (assigning requested URLs to handlers).

– Session.js—Download from https://github.com/Marak/session.js or install

with NPM; for handling user sessions.

– Mustache—Download from http://mustache.github.com/ or install with NPM;

for generating HTML from combining objects and templates, both within

Node and in client-side JavaScript.

– WebSocket-Node—Download from https://github.com/Worlize/WebSocket-

Node or install with NPM; for extending Node to support WebSockets.

■ jQuery—Download from http://jquery.com/.

■ EventEmitter.js—Download from https://github.com/Wolfy87/EventEmitter.

The rest of the files you need are available in the code download from the Manning

.com website; we won’t list them here because they’re not relevant to the WebSockets

logic. You’ll need to either create your own or grab the ones from the download.

AN OVERVIEW OF THE BUILDING PROCESS

After you load your prerequisites and test your installation, the building process will

flow like this:

1 Create a template page.

2 Build planner logic that can be used both in the client and on the server.

3 Create browser event listeners to deal with incoming WebSocket events and

update the plan.

4 Create server logic to listen to incoming messages, update the plan, and send

updates to other clients.

The finished application (figure 4.6) won’t look quite like the real-life example, but it

will feature of the main components. To simulate the experience of a bunch of people

all standing around a real notice board, sipping their coffee, and arguing about where

to put particular tasks, the chat application from section 4.1 is provided in an iframe.

All participants will still have to provide their own coffee.

 The final file layout you’ll create during the build is shown in figure 4.7.

http://nodejs.org/
https://github.com/flatiron/director
https://github.com/Marak/session.js
http://mustache.github.com/
https://github.com/Worlize/WebSocket-Node
http://jquery.com/
https://github.com/Wolfy87/EventEmitter
https://github.com/Worlize/WebSocket-Node

115Using WebSockets to build a real-time messaging web app

With prerequisites installed, but before you build the planner application, let’s make

sure that WebSockets are working for you. In the next section you’ll write a quick test

page to confirm that WebSockets are working correctly in Node and in the browser,

before it all is obscured by your application logic.

4.2.2 Creating a WebSocket with Node.js

Rather than deal with all the low-level, bit-by-bit data manipulation required by the

WebSockets Protocol, you’ll be using the WebSocket-Node module. It allows you to

concentrate on the APIs involved rather than the mundane details of packing bits

together in the correct format—details described for you in appendix C. In this sec-

tion you’ll create two files:

■ A JavaScript file to be run with Node.js

■ An HTML page, which will be sent to the browser

WebSocket API 3 6 10 11 5

Figure 4.6 The finished planning application

Figure 4.7 Planner application

file layout

116 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

The onmessage event is used in every other messaging API in HTML5, so it should

come as no surprise to you that it gets used in WebSockets, too. For WebSockets you

need to create a WebSocket object and attach a function to the message event listener.

 The code you write will dump information to the console as it receives it; sample

console output is shown in the following listing.

Sun Nov 27 2011 23:59:13 GMT-0800 (PST) Server is listening on port 8080
Sun Nov 27 2011 23:59:24 GMT-0800 (PST) Connection accepted.
Received Message: My Message

Figure 4.8 shows the corresponding output in the browser developer console. The

browser requests the page; then it upgrades the connection to a WebSocket. It sends

the message “My Message” before receiving the response from the server; in this case

the same “My Message” string is sent back as a message.

 The next listing shows JavaScript that opens a WebSocket, then listens for messages

from the server. You should create a page named websocket-sample.html and include

this listing in a <script> block. The page doesn’t need to do anything or have any

content; you’ll determine success by examining the JavaScript console (see step C in

the listing).

var ws = new WebSocket('ws://localhost:8080');
ws.onmessage = function(e) {
 console.log(e.data);
};
ws.onopen = function() {
 ws.send('My Message');
};

Listing 4.10 Server output for a simple WebSocket test

Listing 4.11 A simple JavaScript WebSockets client

As each message is received, it’s reflected
back in a message to the client.

Figure 4.8 The simple WebSocket client running in the browser

Core API

This line creates a WebSocket
object; note that the URL uses
the ws:// protocol.The

familiar
onmessage

event

Log the data to the
console so you can see it.

The onopen event fires when the socket created in the
first step is successfully opened by a browser—this
function then sends a message to the server.

117Using WebSockets to build a real-time messaging web app

On the server, the WebSocket-Node library is used to extend the base HTTP server.

Appendix E provides the steps you need to take to install this module in Node; if

you’re following along step-by-step, please take that detour now.

 With the module installed, you’re ready to continue. Our next listing shows a

Node.js app that will accept a WebSocket request and echo back any message sent to

it. Save it as websocket-sample.js in the same directory as the file from listing 4.11.

var http = require("http");
var fs = require('fs');
var WebSocketServer = require('websocket').server;

function handler (req, res) {
 fs.readFile(__dirname + '/websocket-sample.html',
 function (err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading websocket-sample.html');
 }
 res.writeHead(200);
 res.end(data);
 });
}

var app = http.createServer(handler);

app.listen(8080, function() {
 console.log((new Date()) + " Server is listening on port 8080");
});

wsServer = new WebSocketServer({
 httpServer: app
});

wsServer.on('request', function(request) {
 var connection = request.accept(null, request.origin);
 console.log((new Date()) + " Connection accepted.");
 connection.on('message', function(message) {
 console.log("Received Message: " + message.utf8Data);
 connection.sendUTF(message.utf8Data);
 });
});

TRY IT OUT

Run listing 4.12 with Node (enter node websocket-sample.js on the command line).

Now open your browser and connect to http://localhost:8080/ and check the console

for the output.

4.2.3 Building the planner application

Now that you’ve confirmed that WebSockets are functioning both in Node and in

your browser, and you know how to implement the WebSocket API in the client and

Listing 4.12 A simple Node.js WebSockets server

This handler function
will be run in response
to any HTTP request.

Create a basic HTTP
server object.

Start the server
listening on port 8080.

The WebSocket-Node module is designed to extend an
existing HTTP server; the HTTP server object is passed
to the WebSocket server object as a parameter.

This handler function
will be run in
response to any
WebSocket request.

When a
client

connects
to the

WebSocket,
add a

handler for
received

messages.

The handler will echo any
message received back to the
socket it was received from.

http://localhost:8080/

118 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

how to set up Node.js to service those WebSockets, you’re ready to build a real applica-

tion that takes advantage of all of these features.

 The steps you’ll follow to build the planner application are these:

■ Step 1: Create a template page.

■ Step 2: Build multipurpose business logic in JavaScript to create and update

plans.

■ Step 3: Handle updates in the browser.

■ Step 4: Handle updates on the server.

STEP 1: CREATE A TEMPLATE PAGE

The markup for the application page, index.html as normal, is shown in the following

listing, though most of the interesting things in this application will be in the linked

JavaScript files.

<body>
 Online now:
 <ul class="chatusers">
 <?php
 print_user_list($dbh);
 ?>

 <div class="chatwindow">
 <ul class="chatlog">
 <?php
 print_chat_log($dbh);
 ?>

 </div><!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Planner</title>
 <link rel="stylesheet" href="style.css">
 <script src="jquery-1.7.2.min.js"></script>
 <script src="EventEmitter.js"></script>
 <script src="planner.js"></script>
</head>
<body>
 <div id="plan">
 <div class="taskqueue">
 Unassigned tasks
 </div>
 <div class="grid">
 Planning board
 <div class="user">
 <div class="who">
 </div>
 <div>
 <div class="todo">

Listing 4.13 The planner index.html file

This section will
contain a list of
tasks that are
currently
unassigned.

This
section will

have one
or more

resources;
each has a
section for
to-do, in-
progress,

and
completed

tasks.

119Using WebSockets to build a real-time messaging web app

 To Do
 </div>
 <div class="inprogress">
 In Progress
 </div>
 <div class="done">
 Done
 </div>
 </div>
 </div>
 </div>
 <div class="external">
 Chat
 <iframe src="http://localhost/sse-chat/index.php">
 </iframe>
 </div>
 </div>
</body>
</html>

 <form id="chat" class="chatform" method="post"
 action="add-chat.php">
 <label for="message">Share your thoughts:</label>
 <input name="message" id="message" maxlength="512" autofocus>
 <input type="submit" value="Chat">
 </form>
</body>

You now have the basic page structure out of the way, so let’s delve into the JavaScript

APIs that will make it all work.

STEP 2: BUILD MULTIPURPOSE BUSINESS LOGIC IN JAVASCRIPT TO CREATE AND UPDATE PLANS

A key advantage of having the server use the same programming language as the cli-

ent is that they can share code. Instead of implementing the same functionality once

in the server-side language and then again in JavaScript, implement it only one time.

Figure 4.9 shows how this works.

 Figure 4.10 shows the architecture of the application on the server and in two identi-

cal connected clients. As you can see, the structure on both client and server is similar.

As each user makes changes, the same methods get fired on their local copy of the plan-

ner object as will be fired on the server planner object and on the planner objects used

by other clients as the messages are passed between them using WebSockets.

 Your model (the object containing the plan) will make use of the events framework,

EventEmitter.js, as mentioned in the prerequisites. This is a browser-compatible version

of the events module that comes as standard with Node. As methods are called on the

model object, events will be fired. You’ll then attach listeners to those events; when

the model is run in the browser, those events will update the UI and send the changes

back to the server. When the model is run on the server, those events will update all the

other connected clients. The following listing shows the basic outline of the object you’ll

be using to store the plan, including some types and some utility functions. Add it to a

file called planner.js. In the next listing you’ll add some functionality.

The final section
embeds the chat
application from
section 4.1.2.

120 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

var Planner = function(ee) {
 var plan = {};
 plan.tasks = [];
 plan.workers = [];
 plan.statuses = ['todo','inprogress','done'];
 var Task = function(task_name, task_id) {
 var that = {};
 that.name = task_name;
 if (typeof task_id === 'undefined') {
 that.id = guidGenerator();
 } else {
 that.id = task_id;
 }

Listing 4.14 Creating the plan object and utility functions in planner.js

The planner object maintains

a copy of the plan and allows

other code to access that plan

through a collection of methods.

In this application the planner object

is implemented in the planner.js file.

Because the server and client

are implemented in JavaScript,

the same planner.js file can

be used on both.

Client files Server files

Planner object

planner.js

load_plan(new_plan)

get_plan()

add_task(task_name, task_id, source)

move_tesk(task_id, owner, status, source)

delete_task(task_id, source)

add_worker(worker_name, source)

delete_worker(worker_name, source)

Figure 4.9 By using the same model (the plan held by the planner object) in the browser and on

the server, the business logic (the methods in the planner object) can be the same in both places.

The planner expects an EventEmitter object
to be passed in when it’s created.

This first section sets
up a few private
variables.

A utility function to
create a new task.

121Using WebSockets to build a real-time messaging web app

 that.owner = '';
 that.status = '';
 }
 function get_task(task_id) {
 return plan.tasks[get_task_index(task_id)];
 }
 function get_task_index(task_id) {
 for (var i = 0; i < plan.tasks.length; i++) {
 if (plan.tasks[i].id == task_id) { return i; }
 }
 return -1;
 }
 function guidGenerator(){
 var S4 = function() {
 return (
 ((1+Math.random())
 *0x10000)|0).toString(16).substring(1);
 };
 return (S4()+S4()+"-"+S4()+"-"+S4()+"-"+S4()+"-"+S4()+S4()+S4());
 }
 var that = { }
 return that;
}

Using the EventEmitter library allows the event code to be identical on both server

and client. The model, your plan object, emits events as the methods on it are called.

On the client side, you’ll listen to these events and update the display appropriately.

Planner

object

Planner

User
events

= Events raised

object

UI

updater

Web

socket

Web

socket

Orches-

trator

Orches-

trator

Client A

Server

Planner

object

UI

updater

Web

socket

Orches-

trator

Client B

Web

socket

Orches-

trator

User
events

Figure 4.10 Planner application architecture following through from User events in Client A:

Events are generated by the client and update the local plan; an orchestrator monitors the plan

and sends those updates through a WebSocket to the server. An orchestrator on the server

updates the server planner object; then those updates are sent out via other WebSockets to

the other connected clients, culminating in the UI of the other clients being updated.

A couple of utility
functions for picking
out tasks from the plan.

A utility function to return a pseudo-GUID
(Globally Unique Identifier), so that every object
created in the plan can have a unique ID.

You’ll populate this object in
listing 4.16; it will contain all the
public properties and methods.As mentioned in the previous

step, the that object is returned.

122 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

The model itself will be updated from two sources:

■ User input

■ Messages from the server

The next listing is the part of planner.js that creates the plan object (that), which

will be returned when the planner is initialized; it should replace var that = { } in

listing 4.14.

 var that = {
 load_plan: function(new_plan) {
 plan = JSON.parse(new_plan);
 ee.emit('loadPlan',plan);
 },
 get_plan: function() {
 return JSON.stringify(plan);
 },
 add_task: function(task_name, task_id, source) {
 var task = Task(task_name, task_id);
 plan.tasks.push(task);
 ee.emit('addTask',task, source);
 return task.id;
 },
 move_task: function(task_id, owner, status, source) {
 var task = get_task(task_id);
 task.owner = owner;
 task.status = status;
 ee.emit('moveTask', task, source);
 },
 delete_task: function(task_id, source) {
 var task_index = get_task_index(task_id);
 if (task_index >= 0) {
 var head = plan.tasks.splice(task_index,1);
 head.concat(plan.tasks);
 plan.tasks = head;
 ee.emit('deleteTask', task_id, source);
 }
 },
 add_worker: function(worker_name, source) {
 var worker = {};
 worker.name = worker_name;
 worker.id = guidGenerator();
 plan.workers.push(worker);
 ee.emit('addWorker', worker, source);
 },
 eachListener: ee.eachListener,
 addListener: ee.addListener,
 on: ee.on,
 once: ee.once,
 removeListener: ee.removeListener,
 removeAllListeners: ee.removeAllListeners,
 listeners: ee.listeners,

Listing 4.15 More planner.js

Once the that object is returned by planner
constructor (listing 4.14), it will access private
functions of planner (i.e., get_task()) via
JavaScript’s closure feature.

In a real
application
you’d add

validation logic
here to check

to see if the
JSON string

constitutes a
valid plan.

A corresponding method to allow the plan’s
current state to be saved outside the object.

Each method will
follow a similar
pattern. Let’s look
at the add_task
method in detail.
Note that the
task_id parameter
is optional—it’s
not needed when
the task is created,
but it will be
needed when this
event is replicated
back on the server
and in other
clients.

The task is
created with

the utility
function and
then pushed

into the
task’s array
on the plan.

An event is
emitted containing
the new task.

For brevity, the
corresponding
delete_worker() method
isn’t shown here; it will
move all the worker’s
tasks back to the queue
and delete the worker.

The EventEmitter methods are now
monkey-patched onto the return object.

You’ll be able to use the on
method to add event listeners
to the plan object.

123Using WebSockets to build a real-time messaging web app

 emit: ee.emit,
 setMaxListeners: ee.setMaxListeners
 };

The UI is mostly drag and drop. We covered this HTML5 API in great detail in chap-

ter 3, so there’s no need to go over it all again. Similarly, updating the display uses

the standard jQuery DOM manipulation methods you’re already familiar with. More

interesting to us right now is what happens when the plan object is updated by these

UI actions and events that arrive via a WebSocket. In the next step, you’ll look at the

code that handles this; in the following step, you’ll look at the server-side code to

handle the updates.

STEP 3: HANDLE UPDATES IN THE BROWSER

Now create the client orchestrator code; for this create a new file called planner-

browser.js in your working directory. The next listing shows the event listeners on the

WebSocket that will update the model and the event listeners on the planner object

that trigger messages to be sent through the WebSocket.

 The WebSocket listeners are added by setting ws.onmessage. And listeners on the

planner object are added with plan.on().

function init() {
 var ee = new EventEmitter();
 var planner = new Planner(ee);
 var render;
 if (typeof MozWebSocket !== 'undefined') {
 WebSocket = MozWebSocket;
 }
 var ws = new WebSocket('ws://localhost:8080');
 ws.onmessage = function(msg_json) {
 var msg = JSON.parse(msg_json);
 switch (msg.type) {
 case 'loadPlan':
 planner.load_plan(msg.args.plan);
 render = new Renderer(planner);
 break;
 case 'addTask':
 planner.add_task(msg.args.task_name,
 msg.args.task_id,
 'socket');
 break;
 case 'moveTask':
 planner.move_task(msg.args.task_id,
 msg.args.task_owner,
 msg.args.task_status,
 'socket');
 break;
 case 'deleteTask':
 planner.delete_task(msg.args.task_id,
 'socket');

Listing 4.16 The planner-browser.js (partial) browser code

Core API

Because this code creates the planner object,
it also has to create the EventEmitter.

Create a
new planner

object
using the

EventEmitter.

In Firefox the WebSocket object is
called MozWebSocket and will be
until the spec is finalized. For practical
use, MozWebSocket is identical to
WebSocket, so map one to the other.

Add a
listener

to the
WebSocket.

Assume that anything received on the
WebSocket is a JSON-encoded object.

The type
property of the

decoded
message object
will be used to
determine the
correct action.

When the client first
connects, expect the
server to deliver a
JSON-encoded planner
object with the latest
version of the plan.

The rest of the potential
messages are mapped
onto their equivalent
planner actions.

124 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

 break;
 }
 };
 ws.onerror = function(e) {
 console.log(e.reason);
 }
 planner.on('addTask', function(task, source) {
 if (source !== 'socket') {
 var msg = {};
 msg.type = 'addTask';
 msg.args = { 'task_name': task.name, 'task_id': task.id };
 ws.send(JSON.stringify(msg));
 }
 });
 planner.on('moveTask', function(task, source) {
 if (source !== 'socket') {
 var msg = {};
 msg.type = 'moveTask';
 msg.args = { 'task_id': task.id, 'owner': task.owner,
 'status': task.status };
 ws.send(JSON.stringify(msg))
 }
 });
 planner.on('deleteTask', function(task_id, source) {
 if (source !== 'socket') {
 var msg = {};
 msg.type = 'deleteTask';
 msg.args = { 'task_id': task_id };
 ws.send(JSON.stringify(msg))
 }
 });
}

STEP 4: HANDLE UPDATES ON THE SERVER

Similarly on the server, the model will be updated by incoming messages from various

clients. Create a file called planner-server.js in your working directory for this code, or

grab the version from the code download. In this file you’ll need to set up listeners on

the model to send those same updates to any other connected client. The key part of

the code for responding to a moveTask message is shown in the following listing.

Check the planner-server.js file in the code download for the rest of the code.

planner.on('moveTask', function(task, source) {
 var msg = {};
 msg.type = 'moveTask';
 msg.args = { 'task_id': task.id, 'owner': task.owner,
 'status': task.status };
 var jMsg = JSON.stringify(msg);
 for (var i=0; i<clients.length; i++) {
 if (source !== clients[i].client_id) {

Listing 4.17 planner-server.js server code

Log any errors to
the console to aid
any debugging. The on method on the planner

object attaches an event
listener. When events are raised
by the in-browser planner
object, they are detected and
sent to the server.Because

adding a
task will

trigger an
addTask

event,
there’s no
need to do
anything if

the original
source of the

event was
this code.

This part of the code is the
same as the equivalent in
listing 4.16. In a more
complex application, you
may want to extract it to a
separate shared module.

The clients variable is an array of
objects representing connected
clients. Each time a connection is
created, an entry is added to the array.

There’s no
need to send
the message

to the
client that

originated it.

125Messaging on the client side

 clients[i].ws.send(jMsg)
 }
 }
});

If you’ve followed along and either downloaded or re-created the UI logic, you should

now have a working planning-board application. In this model of web application

development, the server becomes another client. The bulk of the code involved is

identical to what’s running in all the users’ browsers. You should also have the chat

application from section 4.1 sitting in an iframe alongside it, but so far they’re inde-

pendent applications on different domains. We assume you have the chat application

on port 80 from a standard web server, and the planning board is running on port

8080 from Node. Normally, the browser wouldn’t allow scripts on either page to

exchange data with each other. In the next section, you’ll learn about some HTML5

APIs that enable client-side communication between scripts from different domains.

4.3 Messaging on the client side

Client-side messaging refers to the communication between windows and scripts that are

loaded in the browser. These could be browser windows, iframes, framesets, or worker

threads; the HTML5 specification refers to these with the umbrella term script contexts.

 Before HTML5, communication between different script contexts has been done

by direct DOM manipulation. If you want to build web pages out of loosely coupled

components, this isn’t a good approach for two reasons:

■ Changes to the structure of one component could easily break all the compo-

nents that try to communicate with it.

■ Each component needs access to the full DOM of the hosting page and vice

versa. You can’t share only a limited set of information. Often it’s easier to com-

municate via the server. In the new world of disconnected web applications,

that’s sometimes no longer an option.

Security and validation

In a real application, the server has additional responsibilities in terms of validating

data and persistence. A general tenet of server-side development is to never trust

data you’ve received over the wire. In order to concentrate on using WebSockets,

those features have been left out of the sample application in this section.

Cross-document versus cross-domain

You’ll often hear cross-document messaging referred to as cross-domain messaging. It’s

not a requirement to have the two documents served from different domains. Messaging

will work just as well if the two pages are on the same domain. But that option doesn’t

represent new functionality in HTML, rather a different way of doing something we’ve

been doing for years. As a result, people tend to focus on the cross-domain aspect.

The WebSocket is also
stored in the clients array.

126 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

In this section you’ll have a brief introduction to HTML5’s cross-document messaging API,

and then you’ll look at how to use it to connect the applications from sections 4.1 and 4.2.

4.3.1 Communicating across domains with postMessage

Web browsers usually restrict communication between windows according to the

Same Origin Policy: Scripts on pages loaded from one domain can’t access content in

windows loaded from another domain. This is a sound security approach. Without it,

a website could create an iframe, load your Facebook page into it, and steal your per-

sonal details or post on your wall. But you’ll find plenty of situations where you’ll want

to embed content from other sites in web pages; for example, Google ads and analyt-

ics, Facebook Like buttons, and Twitter feed widgets. You can implement all these

examples by loading JavaScript from other sites using <script> elements. When

scripts are included this way, they have as much access to your content as scripts on

your own domain; they bypass the Same Origin Policy.

Until HTML5, the options for any foreign domain content embedded in your pages

were these:

■ No access to any of your content

■ Complete access to all of your content

It would be nice to have a middle ground between these extremes. Although there

may be some sources you don’t trust at all, it’s likely you have plenty you trust a little

bit. HTML5 satisfies this demand for flexibility with cross-document messaging. The

cross-document messaging API allows a controlled messaging channel to be created

between two pages by using the postMessage method and the onmessage event.

 The postMessage method should be passed two parameters:

■ The message itself

■ The domain of the page being targeted:

windowRef.postMessage('The message', 'http://domain2.com');

The domain parameter is important because it ensures that if a different page is

loaded into the iframe, either by the user clicking a link or through some other activ-

ity, the message won’t be passed. It’s possible to pass a wildcard, '*', as the second

parameter and avoid all the security, but be careful because you could end up sending

your user’s information to a malicious website.

 When a window receives a message, the aptly named message event is fired. As

usual, with DOM events this handler can either be attached declaratively using an

onmessage attribute on the body element or with addEventListener:

window.addEventListener('message', receiver, false);

Cross-document messaging 1 3 8 9.5 4

Core API

Core API

127Messaging on the client side

The receiver function will accept the event as a parameter. The message passed will

be in the data property of the event. In the next section, you’ll implement receiver

functions in the context of the planner and chat apps you built in previous sections.

4.3.2 Joining the applications with cross-document messaging

At this point, you have two applications, from

different servers, coexisting in the same web

page. In this section, you’ll use the cross-domain

messaging API to allow the data in the planner

object to be used to feed an auto-complete fea-

ture in the chat window. This will offer user

names and task titles in a drop-down list to

speed up typing while retaining accuracy, as

shown in figure 4.11.

To implement auto-complete, you need to set up message handlers on both the plan-

ner and the chat applications. The chat application will wait for the user to start typing

and then send the letters of each word as they are typed to the parent window. The

parent window will receive the message, compare the typed letters to the labels exist-

ing within the plan object, and send a message back with a list of matching words. The

code for the chat application part of this is shown in the following listing; add it to the

chat.js file in the SSE chat application.

function getWords(letters) {
 var msg = {};
 msg.type = 'getWordList';
 msg.params = {};
 msg.params.letters = letter;
 parent.postMessage(JSON.stringify(msg), 'http://localhost');
}

window.addEventListener('message', receiver, false);
function receiver(e) {

Auto-complete prerequisite

This section relies on having a JavaScript auto-completer script. In order to con-

centrate on the HTML5 features, this section won’t cover the details; a suitable

script is included in the code download. Add the file to the working directory of the

chat application.

Listing 4.18 Auto-complete interface for the chat application

Figure 4.11 As the user types into the

chat, the letters will be compared to words

in the plan and matches will be shown in a

drop-down list, where they can be selected

using the down arrow.

Called
from an

onKeyPress
listener on

the chat
text input.

Create an object to contain the message; the variety of
message types sent by the chat app is what defines the
services provided by the parent window and is what
defines the interface expected in the parent window. In
more complex applications, you might want to create a
function to define the interface explicitly.

Encode the object to a
string and send it in
the message to the

parent window.

The
standard

onmessage
listener.

128 CHAPTER 4 Messaging: communicating to and from scripts in HTML5

 if (e.origin == 'http://localhost:8080') {
 var msg = JSON.parse(e.data);
 switch (msg.type) {
 case 'wordList':
 showAutocompleter(msg.params.words);
 break;
 }
 }
}

Note that the chat application code is entirely generic—it doesn’t matter what appli-

cation has embedded it as long as it can return a list of words when sent a message in

the correct form. The corresponding code in the planner application is necessarily

specific to the planner. The following listing shows a new method for the planner

object; add it to the planner.js file.

get_words: function(letters) {
 var words = [];
 for (var i=0; i<plan.tasks.length; i++) {
 var tokens = plan.tasks[i].name.split(' ');
 for (var j=0; j<tokens.length; j++) {
 if (tokens[j].length > 3 &&
 tokens[j].indexOf(letters) > -1) {
 words.push(tokens[j]);
 }
 }
 }
 return words;
}

The planner.get_words method needs to be hooked up to the window’s onmessage

event. The next listing shows the code for this, still in planner.js.

window.addEventListener('message', receiver, false);
function receiver(e) {
 if (e.origin == 'http://localhost') {
 var msg = JSON.parse(e.data);
 switch (msg.type) {
 case 'getWordList':
 var words = planner.get_words(msg.params.letters);
 var el = document
 .getElementsByTagName('iframe')[0]
 .contentWindow;
 var response = {};
 response.type = 'wordList';
 response.params = {};
 response.params.words = words;

Listing 4.19 Word-completion service in the planner application

Listing 4.20 Listening to the onmessage event in the planner application

In the sample, there’s
only one domain you
expect to receive
messages from, but
more complex
checking could be
inserted here to allow
dynamic registration
of components.

The messages
accepted

here define
the interface

for the
calling page.

For brevity, the code to create an
element containing the list of words isn’t shown
here, but it’s much the same as the hundreds of

auto-complete scripts available on the web.
Download the sample code for further details.

This method goes inside the
planner object from listing 4.16.

Go through each
task in the plan. . .

. . .and each
word in the
task name.

Add them to the list if
they are at least two
letters long and contain
the requested letters.

This is the list of words that will end
up getting passed to listing 4.18.

Check that the message
came from the page you
expected it to come from.

Create an object to contain the
message, as in listing 4.20. For more
complex applications, you might want
to create a function to define this.

129Summary

 el.postMessage(JSON.stringify(response),
 'http://localhost:8080');
 break;
 }
 }
}

With all this code in place, your work is complete. You should now be able to re-create

the drop-down, shown again here for your convenience in figure 4.12.

4.4 Summary

In this chapter, you’ve learned about the new messaging APIs in HTML5, between pages

in different windows on the client, with cross-document messaging, and between client

and server, with server-sent events and WebSockets. You’ve also gained a practical

understanding of how to use one of the new wave of web servers optimized for event-

driven communication, Node.js. With all this new knowledge you’re well equipped

to build the next generation of web applications, based on lightweight, event-driven

data communication between client and server, and you’ll be able to join several

such applications together in client browsers in a lightly coupled way thanks to

cross-document messaging.

 In the next chapter, you’ll move on to consider an application environment where

saving every byte makes a real difference: mobile web applications. HTML5 offers new

capabilities that allow your application to keep working when no network is available.

Cross-document versus channel messaging

HTML5 has a more general-purpose alternative to cross-document messaging known

as channel messaging. It allows you to create as many message ports as you want,

not only between windows but also between any sorts of JavaScript object. Channel

messaging wasn’t necessary to complete the application in this chapter, but if you

think you’ll find it useful in your own applications, we’ve included a short introduction

in appendix F.

Encode the object to a
string and send it in the
message to the iframe.

This value needs to match the
return words; line in listing 4.19.

Figure 4.12 Planner-chat auto-complete

one more time

Chapter 5 at a glance

Look for this icon throughout the chapter to quickly locate the topics outlined

in this table.

Topic Description, methods, and so on Page

Web storage and

management of sim-

ple key/value pair

data on client-side

local storage

Methods:

■ getItem()
■ localStorage
■ removeItem()
■ clear()

140

140

141

142

Indexed database Complex, indexed client-side database functionality

Database/object store methods:

■ open()
■ createObjectStore()
■ createIndex()
■ loadTasks
■ objectStore()
■ deleteDatabase()

Cursor method

■ continue

145

145

146

150

152

155

150

Application cache Enable web applications to be used when client is offline

Method:

■ swapCache() 160

Core API

